17 Rue des Martyrs
38000 Grenoble
04 38 78 44 00

Logo NanoCat - Advanced Catalysts PEMFC Auto


Francisco Fernandez from our partner TECNALIA present projet results
+ More infos

The project is funded by FCH-JU

Call reference : SP1-JTI-FCH.2012.1.5
Grant Agreement : 325239

Project Summary

Many efforts have been put on the reduction of the Pt loading but nowadays a threshold seems to be obtained. Because the kinetics of the Hydrogen Oxidation Reaction is very fast on Pt, it is possible to use MEA with a Pt loading as low as 35 μgPt/cm-2 without any effect on the voltage loss when such an anode is used in front of a well working cathode. But, the Oxygen Reduction Reaction kinetics is not so fast which is the limiting step concerning the electrochemical processes in a PEMFC. For that raison, the decrease of the Pt loading is now encountering a plateau.

Pt based catalyst on carbon nanotubes
MOx aerogel

Nano-CAT will propose alternatives to the use of pure Pt as catalyst and promote Pt alloys or even Pt-free innovative catalyst structures with a good activity and enhanced lifetime due to a better resistance to degradation. Nano-CAT will thus develop novel Pt-free catalysts (called bioinspired catalysts) and explore the route of nanostructured Pt alloys with very low Pt content.
Catalysts are chemical species on which the electrochemical reactions are accelerated. PEMFC uses heterogeneous catalysis meaning the catalyst needs to be supported on a material in a solid phase (catalyst support). Nano-CAT will focus on the development of new supports with 2 promising sets of solutions : functionalized Carbon NanoTubes and conductive carbon-free Metal Oxide. These supports offering a better resistance towards degradation than the carbon black commonly used will address the issue of the support degradation and the MEA lifetime.
Nano-CAT will follow two routes, one low risk to ensure demonstration of the use of Pt alloys on new resistant supports and one high risk route to evaluate the feasibility of Pt-free MEA based on the use of bioinspired catalysts.
Finally, Nano-CAT addresses all technical issues leading to the industrialization of the project outcomes for automotive application by the development of high quality manufacturing methods of complete MEAs required to maintain high power density and efficiency.


logo01 nanocyl logo02 DLR logo03 technalia logo04 europe logo05 c tech innov logo06 mine paris tech logo07 volvo